
 Advanced Scientific Computing Research
Applied Mathematics

FY 2005 Accomplishment

Scalable Solvers – Toolkit for Advanced Optimization
Steven Benson*, Jorge Moré, Lois McInnes, and Jason Sarich

Argonne National Laboratory

Summary

Discretizations of continuous optimization problems often lead to nonlinear optimization
problems with many degrees of freedom. The Toolkit for Advanced Optimization (TAO)
enables scientists to apply state-of-the-art optimization algorithms, preconditioned linear
equation solvers, automatic differentiation, multilevel methods, and parallel hardware to solve
these problems and achieve scalable performance.

Examples of continuous optimization
problems include the variational form of
elliptic partial differential equations and
obstacle problems from physics and
engineering. Obstacle problems, as shown in
Figures 1 and 2, minimize the area of a
surface fixed at the boundary and stretched
over obstacles. Finite element methods
approximate these problems by creating a
mesh, discretizing the domain, and
formulating the optimization problem with a
finite number of variables. However, the
number of variables required for a sufficient
approximation may still be very large and
demand computationally intensive methods.

* Mathematics and Computer Science Division, (630)-252-7232, benson@mcs.anl.gov

At Argonne we are exploring scalable
algorithms for mesh-based optimization
problems in the sense that the number of
operations required to solve the problem
grows linearly with the number of variables:
this is an ambitious requirement from a
computational viewpoint. Scalable
algorithms for mesh-based problems
generally required mesh-invariance in the
sense that the number of iterations is
independent of the granularity of the mesh.
In theory, mesh-invariance can be obtained

with a traditional Newton’s method, but in
practice numerous complications arise. The
main difficulties are the generation of the
mesh, the computation of derivatives, and
the preconditioning of the Hessian matrix.

Figure 1: Obstacle problem on a fine mesh.

The lack of efficient numerical software
makes the development of scalable
algorithms in a single-processor
environment difficult. Parallel-processor
environments magnify these difficulties
because the overhead of communication
between processors must be balanced with
other performance considerations. As a
result, many practitioners are left to
assemble their own methods. To address

these problems, the Toolkit for Advanced
Optimization (TAO) has implemented
efficient optimization algorithms and
coupled them with two other software
packages developed at Argonne. TAO
version 1.8, released in May 2005, uses
ADIC to compute derivatives and PETSc to
precondition the linear equations. By
partitioning the domain over multiple
processors, users of TAO can solve mesh-
based problems in parallel and achieve
scalable performance.

Figure 2: Obstacle problem on a coarse mesh can be
coupled with a fine mesh to provide scalable
performance in the optimization solvers.

Newton’s algorithm for the optimization
problem requires the first- and second-
derivative information from the objective
function. Writing code that evaluates the
function can be difficult and prone to error.
Automatic differentiation is a technique for
generating code that computes gradients and
higher-order derivatives. Given code that
computes the objective function, this
software generates additional code that
computes the function and its gradient.
Using TAO, scientists need only implement
the objective function over a single element
with a few variables; the toolkit will apply
ADIC, the automatic differentiation tool
developed at Argonne, to compute the
derivatives in parallel.

The performance of optimization solvers
depends heavily on the performance of the
linear solver in the algorithm. TAO uses
PETSc, also developed at Argonne, to apply
Krylov methods with a variety of
preconditioners such as incomplete LU
factorization and additive Schwartz
methods.

Mesh sequencing is a technique for solving
mesh-based problems that uses the solution
of a problem on coarse mesh solution as the
initial starting point for a finer mesh. This
multilevel method is a standard technique
for solving systems of nonlinear differential
equations, but with few exceptions, it has
not been used to solve mesh-based
optimization problems.

Table 1: Performance of TAO Solver on Obstacle
Problem on 16 Processors.

Table 1 shows the time needed to solve the
obstacle problem on four distinct meshes.
The numbers reflect the use of a Newton
solver with an incomplete LU
preconditioner, ADIC, and mesh
sequencing. The computations used 16
processors from the “Jazz” Linux cluster at
Argonne’s Laboratory Computing Resource
Center. The data shows that as the number
of variables increases, the time required to
solve the problem increases proportionately.
TAO solvers are developed with this kind of
scalability in mind.

For further information on this subject contact:
Jorge Moré
Argonne National Laboratory
more@mcs.anl.gov
(630)-252-7238

Mesh Variables Iterations Seconds
1121 x 1121 4 2.5
2241 x 2241 1 2.9
4481 x 4481 1 9.4
8961 x 8961 1 29.4

	Steven Benson*, Jorge Moré, Lois McInnes, and Jason Sarich
	Argonne National Laboratory

[image: image1.jpg]

Advanced Scientific Computing Research

Applied Mathematics

FY 2005 Accomplishment

Scalable Solvers – Toolkit for Advanced Optimization

Steven Benson*, Jorge Moré, Lois McInnes, and Jason Sarich

Argonne National Laboratory

Summary

Discretizations of continuous optimization problems often lead to nonlinear optimization problems with many degrees of freedom. The Toolkit for Advanced Optimization (TAO) enables scientists to apply state-of-the-art optimization algorithms, preconditioned linear equation solvers, automatic differentiation, multilevel methods, and parallel hardware to solve these problems and achieve scalable performance.

Examples of continuous optimization problems include the variational form of elliptic partial differential equations and obstacle problems from physics and engineering. Obstacle problems, as shown in Figures 1 and 2, minimize the area of a surface fixed at the boundary and stretched over obstacles. Finite element methods approximate these problems by creating a mesh, discretizing the domain, and formulating the optimization problem with a finite number of variables. However, the number of variables required for a sufficient approximation may still be very large and demand computationally intensive methods.

At Argonne we are exploring scalable algorithms for mesh-based optimization problems in the sense that the number of operations required to solve the problem grows linearly with the number of variables: this is an ambitious requirement from a computational viewpoint. Scalable algorithms for mesh-based problems generally required mesh-invariance in the sense that the number of iterations is independent of the granularity of the mesh. In theory, mesh-invariance can be obtained with a traditional Newton’s method, but in practice numerous complications arise. The main difficulties are the generation of the mesh, the computation of derivatives, and the preconditioning of the Hessian matrix.

[image: image3.jpg]

Figure 1: Obstacle problem on a fine mesh.

The lack of efficient numerical software makes the development of scalable algorithms in a single-processor environment difficult. Parallel-processor environments magnify these difficulties because the overhead of communication between processors must be balanced with other performance considerations. As a result, many practitioners are left to assemble their own methods. To address these problems, the Toolkit for Advanced Optimization (TAO) has implemented efficient optimization algorithms and coupled them with two other software packages developed at Argonne. TAO version 1.8, released in May 2005, uses ADIC to compute derivatives and PETSc to precondition the linear equations. By partitioning the domain over multiple processors, users of TAO can solve mesh-based problems in parallel and achieve scalable performance.

[image: image2.jpg]

Figure 2: Obstacle problem on a coarse mesh can be coupled with a fine mesh to provide scalable performance in the optimization solvers.

Newton’s algorithm for the optimization problem requires the first- and second-derivative information from the objective function. Writing code that evaluates the function can be difficult and prone to error. Automatic differentiation is a technique for generating code that computes gradients and higher-order derivatives. Given code that computes the objective function, this software generates additional code that computes the function and its gradient. Using TAO, scientists need only implement the objective function over a single element with a few variables; the toolkit will apply ADIC, the automatic differentiation tool developed at Argonne, to compute the derivatives in parallel.

The performance of optimization solvers depends heavily on the performance of the linear solver in the algorithm. TAO uses PETSc, also developed at Argonne, to apply Krylov methods with a variety of preconditioners such as incomplete LU factorization and additive Schwartz methods.

Mesh sequencing is a technique for solving mesh-based problems that uses the solution of a problem on coarse mesh solution as the initial starting point for a finer mesh. This multilevel method is a standard technique for solving systems of nonlinear differential equations, but with few exceptions, it has not been used to solve mesh-based optimization problems.

Table 1: Performance of TAO Solver on Obstacle Problem on 16 Processors.

		Mesh Variables

		Iterations

		Seconds

		1121 x 1121

		4

		2.5

		2241 x 2241

		1

		2.9

		4481 x 4481

		1

		9.4

		8961 x 8961

		1

		29.4

Table 1 shows the time needed to solve the obstacle problem on four distinct meshes. The numbers reflect the use of a Newton solver with an incomplete LU preconditioner, ADIC, and mesh sequencing. The computations used 16 processors from the “Jazz” Linux cluster at Argonne’s Laboratory Computing Resource Center. The data shows that as the number of variables increases, the time required to solve the problem increases proportionately. TAO solvers are developed with this kind of scalability in mind.

For further information on this subject contact:

Jorge Moré

Argonne National Laboratory

more@mcs.anl.gov

(630)-252-7238

* Mathematics and Computer Science Division, (630)-252-7232, benson@mcs.anl.gov

